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Abstract 
Understanding tumor development crossing multiple spatial-temporal scales is of great practical importance to 
better fighting against cancers. It is hard to attack this problem with pure biological means. In recent decades, 
computer-based modeling and simulation techniques have been playing an increasingly important role in 
addressing it. After reviewing the literature, however, we notice that existing tumor models are either highly 
simplified or too complicated to be scaled to large tumor systems. In light of these problems, we have developed 
a software environment TUGME to facilitate the multi-scale modeling and simulation of tumor development 
based on the agent-based method. The most important feature of this software environment is its flexibility 
which enables straight-forward model reuse and extension. Tumor models of TUGME are hybrid as discrete and 
continuous approaches are coupled to model the discrete and continuous nature of the tumor system. TUGME is 
highly modularized, thus changing one module only requires few or no modifications to the others. 
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1. Introduction 

Basic cancer research by biologists is mainly 
carrying out experiments in the laboratory (the so-
called wet-lab experiments [1]). In general, the 
experimental materials are various types of cancer 
cells, which are either injected into living animals 
like mice to induce tumors within them (In vivo 
tumors) or cultivated in culture medium with 
properly supplied nutrients like glucose (in vitro 
tumors). Research directly based on in situ and 
metastasis tumors within the body of persons with a 
cancer can seldom done as a set of very strict 
regulations have to be passed. In vivo environment 
(the body of animals) is obviously mostly similar to 
human bodies. Hence, experimental results drawn 
based on the in vivo tumors are usually believed 
more reliable.  

However, many aspects of the in vivo 
environment are hardly controllable to researchers, 
especially the individual-tumor dependent factors as 
well as the intrinsic randomness. Compared with in 
vivo environment, the environment of in vitro tumors 
can be better controlled, but it is relatively less real 
for the absence of normal tissue cells that surround in 
vivo tumor tissues. In general, easy to control and 
limited effects of secondary factors of in vitro 
environment allow a more direct investigation of 
individual factors (univariate analysis), which makes 
the in vitro tumors popular among experimental 
oncologists. Tumor monolayer is prevalent in vitro, 
where tumor cells grow on a Petri dish with 
necessary nutrients for sustaining cell growth and 
proliferation. One important characteristic of tumor 
monolayers is that all cultured cells have basically 
the even accessibility to nutrients, hence, distinct 
tumor cell dynamics are considered as the result of 
all other factors except nutrients. It is an important 
experimental means for investigating and analyzing 
the growth and invasion mechanisms of tumors [5, 6, 
7]. Besides, tumor monolayers have been widely 
used as test systems to investigate the curative 
effects of anti-cancer drugs, radiotherapy, and 
chemotherapy etc [8].  

Unfortunately, tumor monolayers cannot 
represent many aspects of actual tumor cell 
aggregates, for example, the 3D structure and the 
biological and biophysical properties of closely 
related to the 3D structure as it has been discussed in 
[5]. Multicellular tumor spheroids (MTSs) first used 
to investigate the effects of radiotherapy on tumor 
cells by Sutherland et al. in 1971 [6], are now 
prominently applied to cancer research. MTSs are 
thought to be more real and suitable in vitro tumor 

models for preserving the 3D structure of real tumor 
cell aggregates. Furthermore, significant differences 
or even contradictory phenomena have been indeed 
observed by conducting comparative experiments 
using tumor monolayers and MTSs [7]. MTSs 
provide an alternative with intermediate complexity 
between tumor monolayers and in vivo tumors, and 
more importantly, they can be used to model the 
avascular growth of real tumors that are too small to 
detect clinically. In addition, quantitative 
measurements of MTSs are very important 
references for validating the in silico cancer models. 

 
 
2. Tumor Models and Cell Representation 

Generally there are three classes of approaches 
for cancer modeling: namely the continuum, the 
discrete and the hybrid [7]. Each type of approach 
has its own characteristics which make it proper for 
investigating certain features of tumors and tumor 
cells. Continuum models are generally realized by 
Ordinary differential Equations (OREs) or Partial 
Differential Equations (PDEs). They are usually 
applied to study the large scale properties, such as 
the population and the volume of tumor tissues [6] or 
the density of tumor cells [9]. Reaction-Diffusion 
Equations (RDEs) are commonly adopted to model 
the transport and metabolism of nutrients [10], where 
the diffusion term and the reaction term 
correspondingly model the molecular diffusion and 
consumption by cells.  

 

 

Figure 1. Growth Tumor [8] 

Continuum models have many valuable 
advantages. First of all, they can be scaled to very 
large tumors without substantially increasing the 
computational cost of modeling solving. Secondly, 
they can be solved efficiently on computers, since 
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there are many classical methods particularly for 
solving complex PDEs numerically. The 
disadvantage of continuum models is that the 
discreteness of individual tumor cells is di cult to 
explicitly model. As the basic building units of a 
tumor tissue, cells are discrete by nature. Cellular 
membranes separate the inner cell world from the 
surroundings. Behaviors of cells, such as growth, 
proliferation, movement and death, are individual-
cell- based. Furthermore, tumor cells are 
heterogeneous [11]. To take into account the discrete 
nature, the discrete approach has been proposed 
naturally. The discrete approach enables much higher 
flexibility in representing individual tumor cells 
compared with the continuum approach. Its basic 
idea is to treat each tumor cell as an individual 
object, where cell growth, proliferation, motion, 
death, interactions can be explicitly modeled as the 
behaviors of the individual cell objects. ABM is 
naturally adopted. However, the discrete approach 
isn't versatile in representing all the aspects of 
tumors or tumor cells. For example, the transport and 
metabolism of biochemical molecules are too 
nescient to realize with the discrete approach. The 
hybrid approach, which naturally integrates the 
continuum and discrete approaches, gradually 
becomes the favor of tumor modelers in recent years 
[1]. 

 
 
3. The Mathematical Method and Software  
    Tools 

ABM is a powerful technique for model design 
in computer-based simulations. On the one hand, 
simulation is often utilized to investigate agent 
systems, for example multi-agent systems (MAS) 
[11]. On the other hand, ABM has been widely used 
as a standard model design method for a wide range 
of applications in computer-based simulations [1]. 
An agent is a computer system capable of 
autonomous action in its environment. Agents can be 
thought as objects with strong notion of autonomy. 
Normal objects of systems encapsulate states and 
corresponding state-updating operation methods. In 
contrast, an agent has the ability to actively sense the 
changes in its environment, to deal with the 
perceived information and to make decision for its 
further actions (see figure 1). In a word, an agent is 
not only passively affected by environment, but also 
actively change the environment for its own 
preference. 

  

 

Figure 2.Diagram illustrating agent-agent and 
agent-environment interactions [9]. 

Mathematical based applications basically 
consist of a common environment and a set of agents 
within it. In an agent-based system, an agent 
interacts with other agents (its neighbors) as well as 
its environment [12]. Like a society, an agent-based 
system allows agents to achieve collective goals via 
cooperation’s and coordination’s, and to achieve 
individual aims through competitions. ABM is very 
powerful for model description. Agents of an agent-
based system may share some properties and also 
can vary significantly in some properties and 
behaviors. Besides, a complex agent can be further 
decomposed into sub-agents too. With such high 
flexibility and strong description capability, ABM 
has a wide range of applications, which has 
stimulated the emergence of software environments 
or toolkits to facilitate construction of agent-based 
models. Here, some of them are briefly reviewed 
from the perspective of the possible application in 
agent-based cancer modeling. The software tools are 
representative with respect to the way of constructing 
an agent-based model. One may fund more software 
tools for general applications of agent-based 
modeling and simulation like FLAME or SWARM. 

 
 
4. Role of  Mathematical  and Software  
   Method’s  in cancer therapy 

Mathematical modeling and simulation is a 
versatile tool in comprehending the system behavior 
and has been used for di errant applications in natural 
science and engineering disciplines. A mathematical 
model is an abstraction of a process system. It is 
composed of model equations and parameters. 
Usually, available experimental data is used for 
estimating the model parameters and for validating 
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its prognostic ability. Then, parametric analysis 
(sensitivity analysis with respect to parameters) of 
the model is performed to understand the domain and 
variations of the system behavior with the variation 
in the parameters. With understanding of the system 
and a valid model, one can pursue model based 
process control and optimization. In a similar 
fashion, the applications of the tumor growth 
modeling are many. Firstly, cancer growth can be 
predicted and the main parameters responsible for it 
can be better understood. Secondly, these models can 
be combined with pharmacokinetic and 
pharmacodynamics models of the therapeutic agents 
to study their impact on cancer growth. Thus, the 
combination model can serve as a decision-making 
tool for planning and scheduling of the different 
therapies. In addition, inter-patient and intra-patient 
variability scenarios can be imitated by perturbing 
the parameters and optimization techniques can be 
used to schedule a therapy accordingly. Modeling 
and in silico experiments can provide new insights 
and over different possibilities to understand and 
treat cancer. Experimentalists and clinicians are 
becoming increasingly aware of the role of 
mathematical modeling and its value-addition along 
with medical techniques and experimental 
approaches in order to accelerate our understanding 
in distinguishing various possible mechanisms 
responsible for the tumor growth. 

 

 

 

Figure 3. Change in death rates of different 
diseases in US from 2003 to 2017 [10]. 

 

 

 

 

 
5.  Discussion  

Cancer is a global issue and an important 
multidisciplinary field of research with a lot of open 
ended and challenging problems. The main thrust of 
this thesis is to highlight that application of process 
systems engineering techniques can play an 
important role in addressing the problems related to 
cancer dynamics and its treatment. The main focus of 
this thesis is to study the initial stages of cancer 
progression avascular tumor growth and its 
interaction with the therapeutic agents. In the first 
two chapters, the role of modeling in cancer, broader 
review of works which were done hitherto, 
challenges and contributions of this thesis were 
introduced. The second objective was to propose a 
therapeutic protocol for a given patient while 
considering practical multiple objectives associated 
with cancer therapies. Chemotherapy is the common 
adjuvant therapy given to the patient at stage or 
another during the course of cancer treatment and, 
nowadays, they are combined with the targeted 
therapies to reduce the side effects. Thus, the 
multiple objectives can be broadly related to tumor 
reduction and reduction of side effects. This scenario 
is dealt in chapter 4 by formulating a multi-objective 
optimization problem using a tumor immune-chemo 
model (patient representation) adapted from the 
literature. NSGA -II was used to find the solution set 
known as Pareto set and the decision variables 
represented the timing and dosage of the 
interventions. Then, post-Pareto-optimality analysis 
was done to choose a solution from Pareto set. The 
results for the considered patient have shown that the 
performance of the proposed chemotherapy protocol 
was better than the standard protocol employed in 
medical practice. However, at the end of the 
treatment course the number of tumor cells were in 
the range of 105 cells. Alternatively, the combination 
of chemotherapy and immunotherapy resulted in 
almost complete elimination of tumor cells. Also, 
post-treatment analysis based on tumor relapse time 
has indicated that combination therapy is better than 
chemotherapy. As a whole, this work suggests that 
the immunogenicity factor (intensity of tumor-
immune interactions) must be taken into account 
prior to every therapeutic intervention. 
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6. Mathematical Hybrid Modeling 

Mathematical and computational modeling of 
tumor growth is not new—in fact it goes back over 
50 years. However, to some extent it has largely been 
ignored by the biological and medical communities. 
There are multiple reasons for this but two of the 
most significant revolve around the reductionist 
focus of biology and the lack of directly testable 
hypotheses from the models. By necessity, much of 
the models of cancer were general, 
phenomenological, and not Specific to a type of 
cancer and therefore were plagued by a lack of 
experimental data to both parameterize and validate. 
That is not to say they were not useful. At their heart 
most mathematical models are mechanistic focusing 
on the core processes that drive tumor growth and 
integrating them leading to predictions that are 
holistic by definition [13].  

This further contributed to the lack of biological 
interest in combining laboratory experiments with 
computational simulations. Most of the experimental 
biologists working in this field were more focused on 
the reductionist route revolving around specific 
genetic mutations or signaling pathways that were 
found to be important in cancer development. This 
led to the data explosion that motivated the advent of 
early systems biology and the development of 
bioinformatics. Mathematical biology and the 
mechanistic cancer models it produced were 
somewhat left behind, but little by little they have 
matured moving from simple non-spatial growth 
laws (gompertz) all the way to hybrid multi-scale 
models discussed in this review. See also a list of 
previously published reviews in the Future Reading 
section [14, 15].  

In the last few years, mathematical and 
computational models of cancer have become more 
accepted by the biological community both as means 
to motivate experimentation but also as a route to 
integrate multiple experimental measurements to 
generate testable predictions. This shift has been 
partly driven not only by the emergence of new 
modeling approaches (such as hybrid models) but 
also by the refocusing of the biological community 
on cancer as a system. Mathematical and 
computational models of cancer have almost always 
viewed cancer as a system of multiple interacting 
variables and processes and therefore should really 
be considered part of systems biology. In this review, 
we will focus on the recent development of hybrid 
models of tumor growth. While not an exhaustive 
review we have tried to incorporate all of the most 
up-to-date models, constraining our search to key 
references within the last 5 years. Hybrid models 

integrate both continuous and discrete variables and 
are able to incorporate biological phenomena on 
various temporal and spatial scales. These models 
represent cells as individual discrete entities and 
often use continuous concentration or density fields 
to model cell intracellular and extracellular 
environments. By their very nature, hybrid models 
are ideal for examining direct interactions between 
individual cells and between the cells and their 
microenvironment, but they also allow us to analyze 
the emergent properties of complex multicellular 
systems (such as cancer). It is worth noting that as 
these interactions take place on the intracellular and 
intercellular levels, but are manifested by changes on 
the tissue level, the emergent behavior of growing 
multi-clonal tumors are almost impossible to infer 
intuitively. Hybrid models can facilitate our 
understanding of the underlying biophysical 
processes in tumor growth. For example, by using 
high-throughput simulation techniques, we can 
examine the impact that changes in specific cell 
interactions (or their microenvironment) have on 
tumor growth and treatment. Hybrid models are 
often multi-scale by definition integrating processes 
on different temporal and spatial scales, such as gene 
expression, intracellular pathways, intercellular 
signaling, cell growth, or migration [16].  

There are two general classes of hybrid-models, 
those that are defined upon a lattice and those that 
are off-lattice. The structure of this review will be to 
view these two broad classes in terms of increasing 
cellular complexity. We will then revisit these 
models in terms of the level of biological detail of 
the tumor growth process they recapitulate. Finally, 
we will discuss the critical role that integration needs 
to play if we want to make a direct impact on cancer 
research and treatment both from the perspective of 
integrating models with experiments but also from 
the perspective of integrating multiple modeling 
approaches. 

 
 
 
7.  Hybrid Models Complexity 

Hybrid models can be divided into two classes 
that depend reciprocally on the number of cells these 
models can handle and the included details of each 
individual cell structure, i.e., models dealing with 
large cell populations but with simplified cell 
geometry, and those that model small colonies of 
fully deformable cells (Figure 1). Simplified 
geometry models are capable of handling large 
number of cells (thousands to millions) and still treat 
them as individual entities that can both act 
independently of other cells (individual cell cycle, 
cell mutations, cell phenotype) and interact with their 
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immediate neighbors (cooperate or compete). With 
these kind of models, one can simulate tumor growth 
up to clinically relevant sizes, thereby allowing for 
incorporation of different kinds of tumor treatments, 
and enabling us to test in silicon new and preexisting 
treatment protocols. 

 

Figure 1. Reciprocal relation between the number of 
cells handled [13] 

Models with deformable cells allow us to 
investigate the intimate interactions between 
individual cells and between cells and their 
environment. Various cellular processes can be 
represented in these models in a more realistic way, 
by incorporating, e.g., the time- and space-dependent 
enlargement of growing cells, the orientation of cell 
division, the elongation during cell migration. Both 
classes, however, can be coupled with additional 
equations, such as ordinary differential (ODE), 
partial differential (PDE), and/or stochastic 
equations, to describe signaling or metabolic 
pathways, as well as mechanical or molecular details 
of cell life processes [17]. Technically, hybrid 
models can also be divided into two classes, on- and 
off-lattice (Figure 2), however, this term actually 
refers only to the imposed positions of the cells [a 
square, hexagonal, or cubic lattice versus 
unconstrained locations in the two- (2D) or three-
dimensional (3D) space], but the underlying 
chemical or physical fields are typically defined on 
regular grids in both kinds of models (as the simplest 
way to solve standard reaction-diffusion equations). 
We elaborate on both classes of model below, 
discussing in briefly the different models that fit in 

each class and how they have been applied to tumor 
growth [18]. 

 

Figure 2. Snapshots from simulations of various 
hybrid models of tumor growth. (a) Three-dimensional 
(3D) tumor spheroid simulated by ahybrid cellular 
automaton (Reprinted with permission from Ref 12. 
Copyright 2007 Birkhauser-Verlag).  

 

 
 
8.  Biological Complexity 

Cancer development is a complex multi-scale 
process that depends on both the intrinsic factors 
(such as genetic mutation, gene expression, cell 
adaptability, robustness, and phenotypic evolution) 
and on extrinsic cues sensed from the cell 
microenvironment (such as multiple metabolite and 
nutrient gradients, different densities and alignments 
of ECM fibers, or diverse tissue architectures). 
Experimentally, cancer evolution and development 
are generally only considered at the gene or protein 
scale; however, recently there has been a great deal 
of interest in the impact of this evolution at the 
cellular scale. After all, selection occurs upon the 
cellular phenotype even if mutations take place in the 
genotype. This selection pressure is often driven by 
the changes in the tumor microenvironment. Hybrid 
models seem particularly well suited to investigate 
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the evolutionary aspects of cancer and various 
strategies have been developed to model evolution of 
both cell phenotypes and genotypes, as well as the 
complex interactions between cancer cells and their 
surrounding microenvironment. Evolution of cell 
phenotypes is often modeled using deterministic 
flow charts in which a decision to enter the specific 
cellular process (such as cell growth, division, death, 
or movement) is determined sequentially by 
comparing cell status (e.g., cell age, nutrients level, 
the number of cell neighbors, or the configuration of 
cell membrane receptors) to predetermined 
thresholds [19]. Another approach involves the 
introduction of random mutations that determine the 
evolution of a given cellular phenotype (e.g., 
doubling time, death rate, or sensitivity to contact 
inhibition) or cell interactions with external factors 
(such as concentration of metabolites or ECM 
degradation). Such interactions can be also modeled 
using the neural networks18,21 or systems of ODEs 
defining certain signaling pathways or protein 
networks. Evolution of cell phenotypes depends not 
only on cell genotype but also on cues sensed by the 
cells from their neighborhood.  

Moreover, the evolving cells modify also their 
immediate vicinity, and these mutual interactions 
may lead to the emergence of certain 
microenvironments promoting tumor development. 
The establishment of a three-layered structure 
(consisting of a proliferating rim, a ring of quiescent 
cells, and a necrotic core) that arises in tumor 
spheroids as a consequence of nutrient depletion has 
been reproduced by virtually every kind of modeling 
approach, and has become a test problem for every 
newly developed mathematical model of solid tumor 
growth. Gradients of nutrients, such as oxygen or 
glucose, are not the only chemical species present in 
the stroma surrounding normal and tumor tissues. In 
fact, tumor cells are exposed to various enzymes 
[more than 20 kinds of matrix metalloproteinase 
(MMPs) and tissue inhibitors of matrix 
metalloproteinase (TIMPs), a multitude of growth 
factors and a range of chemokine’s. Mathematical 
models were used extensively to investigate the 
relations between gradients of various metabolites 
and the emerging morphologies of developing 
tumors. In addition to responding to various 
chemical factors, tumor cells can mechanically 
interact with other tumor cells as well as with various 
other stromal cells, such as fibroblasts, macrophages, 
and immune cells [20].  

Tumor cell behavior depends also on the 
interactions with its physical environment, e.g., 
variable densities and alignment of different ECM 
fibers (such as collagen, laminin, elastin, or 
fibronectin). The intimate adhesive relations between 
neighboring tumor cells, cells and the ECM, and the 

interactions between tumor cells and other stromal 
cells have been addressed by multiple investigators. 
The initiation and progression of most tumors 
depends strongly on the architecture of the host 
tissue. Various computational models have addressed 
the issues arising from confined microenvironments 
such as the structure of epithelial ducts or brain 
geometry [21]. 

 
 
9. Bridging Scales and Models 

In principle, it is possible to build a model that 
will span multiple scales from the genotype and 
various biochemical reactions to the details on cell 
morphology, and the collective behavior of millions 
of individual cells forming the whole tumor tissue. 
However, such a model may acquire structural 
complexity that is comparable with biological cells 
and far less effective computationally than the real 
living organism. It is therefore more desirable to find 
ways to bridge independent models rather than build 
a single ‘mega-model’ that encompasses all the 
complexity of tumor development. This bridging 
may be in terms of separate models that consider 
distinct parts of the cancer process or the same 
process but on different scales. Our group has 
undertaken such an approach to address genetic, 
mechanistic, and evolutionary mechanisms of 
disruption of tissue homeostasis and initiation of 
tumor growth, as well as to investigate how the local 
tumor microenvironment can select for cells with an 
invasive advantage. Similarly, the questions of 
vascular endothelial growth factor (VEGF) transport 
in healthy and cancerous vascular systems were 
investigated by Popel and collaborators using a 
multi-compartment model [22].  

The emergence of glycolytic phenotype in 
carcinogenesis was addressed by Gatenby and 
colleagues using a combination of approaches 
including CA, evolutionary dynamics, information, 
or competition theories. The advantage of applying 
several distinct models in answering the same 
scientific question is manifold. If these models 
produce similar (or comparable) outcomes, the 
common assumptions underlying the investigated 
phenomena can be identified, and used to infer 
underlying mechanisms that can then be further 
investigated experimentally. If these models result in 
different outcomes, further investigation can be 
carried to determine which features specific to each 
model have influenced the contrasting results and 
how this relates to the underlying biology. Again, 
this may lead to further experimentation to confirm 
or rule out the contrasting results. 
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Figure 3. A schematic of modeling scales and 
techniques. Multiple biological scales can be bridged 
by various types of mathematical models [23]. 
 

 
10. Discussion 

As we hinted at in the opening section of this 
article, computational models developed and 
implemented without real experimental data to 
neither parameterize nor validate their predictions 
was one of the major limitations in them gaining 
biological acceptance. What has recently become 
clear is that there is not only a need for greater 
integration between models and experimentation but 
also a requirement. This dialogue must go both way 
experiments should drive models and models should 
drive experiments. Models can utilize experimental 
data and produce novel hypotheses but without the 
experimental testing to validate or negate such 
hypotheses, it becomes a very limited academic 
exercise. Although to be fair, it can be very difficult 
to find appropriate collaborators motivated to 
provide such experimental support. 

Models need to drive experimentation and to 
some extent this requires an understanding of the 
experimental systems that are currently being used 
by the cancer research community. The schematic 
presented in Figure 3 highlights the multiple scales 
that are experimentally studied in cancer research by 
means of the experimental systems that are utilized. 
If we truly want to build integrated models, then we 
need to think of what sort of experiments will be 
needed to drive our models and validate them. From 
our personal experience, this leads to a significant 
shift in thinking in relation to which components are 
incorporated into a model and which are not. It also 
dictates what type of model should be utilized and 
this review would not be about hybrid models if we 
did not believe that hybrid approaches are perfectly 
suited to facilitate such integration. Owing to their 
cell-centric nature, hybrid models naturally connect 
with cell biology and readily incorporate micro 
environmental components.  

 
 
11. Conclusion 

Cancer is a complex, multi-scale process in 
which genetic mutations occurring at a subcellular 
level manifest themselves as functional changes at 
the cellular and tissue scale. The multi-scale nature 
of cancer requires mathematical modeling 
approaches that can handle multiple intracellular and 
extracellular factors acting on different time and 
space scales. Hybrid models provide a way to 
integrate both discrete and continuous variables that 
are used to represent individual cells and 
concentration or density fields, respectively. Each 
discrete cell can also be equipped with sub-models 
that drive cell behavior in response to micro-
environmental cues. Moreover, the individual cells 
can interact with one another to form and act as an 
integrated tissue. Hybrid models form part of a larger 
class of individual-based models that can naturally 
connect with tumor cell biology and allow for the 
integration of multiple interacting variables both 
intrinsically and extrinsically and are therefore 
perfectly suited to a systems biology approach to 
tumor growth. 

The interface between tumor cells and their 
microenvironment being one of the critical drivers of 
cancer progression, the other being the intracellular 
changes that result from mutations, altered 
intracellular and intercellular signaling or protein 
trafficking, which can also be captured using hybrid 
models. It is worth restating that cancer is a multi-
scale process, whereby mutations at the molecular 
scale effect protein formation that effects signaling 
pathways, which modulate cell behavior that 
transforms the tissue leading to damaged organs and 
potentially death. This complex multi-scale process 
can be broken down into smaller units that are more 
amenable to both experimental and theoretical 
approaches. This again brings into focus the bridging 
nature of mathematical models that are critical for 
understanding how the different biological scales of 
cancer impact upon one another. The models we 
have focused on this review bridge several scales 
both above and below the fundamental unit of the 
cell (Figure 3), however, they cannot bridge all—this 
most certainly will require different modeling 
approaches such as continuous or statistical models. 
In addition, there is an unspoken void between in 
vitro and in vivo models and between in vivo and the 
clinic. In silico models have the power to link these 
approaches and in doing so can give some insight 
into the processes that translate well between them 
and those that do not. This is a severely understudied 
area for modeling in cancer research and should be a 
ripe focus for future work. 
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