
 Int. J. of Comp. & Info. Tech., (2016) 4(2): 35-42.

35

ISBN: 2345-3877
www.ijocit.org
Volume 4, Issue 2

 Review Paper__

Distinctive Vulnerabilities in Web Applications:
A Literature Review

Er. Gurjot Singh 1*
Rajdeep Kaur 1
Arshdeep Kaur 1

Received: 12 Feb 2016
Accepted: 07 May 2016

Copyright © The Author(s). All Rights Reserved.

Abstract
Web applications are significant, common distributed systems whose current security relies primarily on server-
side mechanisms. Web applications provide end users with client approach to server functionality through a set
of web pages. These web pages often contain script code to be accomplished dynamically within the client web
browser. Most web applications aim to impose simple, intuitive security policies, such as, for web-based email,
disallowing any scripts in un-trusted email messages. Even so, Web applications are directly subject to a
plethora of successful attacks, such as cross-site scripting, cookie theft, browser hijacking, and the new self-
propagating worms in Web-based email and social networking sites. In this paper, we emphasized on the
literature about web application vulnerabilities to eliminate common security exploits and to defend the
emerging class of rich, cross-domain web applications.

Keywords: SQL Injection, Cross Site Scripting, Web Vulnerabilities.

Citation: Singh, E. G.; Kaur, R.; Kaur, A.(2016). Distinctive Vulnerabilities in Web Applications: A
Literature Review, Int. J. of Comp. & Info. Tech. (IJOCIT), 4(2): 35-42.

1

*
Department of Computer Science & Applications, K.M.V., (G.N.D.U.), Jalandhar, Punjab, India.
Corresponding Author: dr.gurjotsingh@yahoo.com.

Singh, E. G.; Kaur, R.; Kaur, A.

36

1. Introduction

With the development of information technology, [1]
website security is very important because the
website contain critical information about a company
and now a day’s website impairment is very common
even a script kiddies and a new born hackers can do
this. Despite their influences, web applications do
raise a number of security involvements stemming
from improper coding. Serious flaws or
vulnerabilities, allow hackers to gain direct and
public connection to databases in order to churn
precise data. Many of these databases contain
valuable information (e.g., personal and financial
details) making them a numerous target of hackers.
Although such acts of vandalism as obliterate
corporate websites are still commonplace, nowadays,
hackers prefer promoting access to the sensitive data
consisting on the database server because of the
enormous pay-offs in selling the data.

In the framework expressed above, it is easy to
see how a hacker can instantly access the data
consisting on the database through a dose of
creativity and, with luck, failure or human error,
prominent to vulnerabilities in the web applications.

As stated, websites depend on databases to
distribute the required information to visitors. If web
applications are not protect, i.e., vulnerable to,
partially one of the distinct forms of hacking
techniques, then your unified database of sensitive
information is at serious risk. Some hackers, for
example, may maliciously infuse code within
vulnerable web applications to hoax users and
redirect them against phishing sites.

This procedure is called Cross-Site Scripting and
may be used even still the web servers and database
engine consist of no vulnerability themselves. Recent
research parades that 75% of cyber-attacks are done
at web application level.

The remainder of this paper is organized as
follow: in the section 1.1 we introduce the web
applications and in section 1.2, we discuss the
distinctive web application vulnerabilities. In the
next section 2, we present the literature on web
application and their vulnerabilities. At last, we
conclude the paper.

2. WEB Applications

From a technical view-point, the web is an extremely
programmable environment that allows mass
customization through the immediate deployment of

a large and distinct range of applications, to millions
of global users. Two important components of a
modern website are malleable web browsers and web
applications; both available to all and sundry at no
expense.

Web browsers are the software applications that
avow users to fetch data and interact with content
located on web pages within a website. Today’s
websites are a deep cry from the static text and
graphics showcases of the early and mid-nineties:
modern web pages allow illustrated dynamic content
to be pulled down by users according to individual
preferences and settings. Furthermore, web pages
may also rush client-side scripts that “change” the
Internet browser into an interface for such
applications as web mail and associative mapping
software (e.g. Yahoo Mail and Google Maps).

Most importantly, modern web sites concede the
capture, processing, storage and transmission of
sensitive customer data for immediate and repetitive
use and, this is done through web applications. Such
appearance as webmail, login pages, brace and
product request forms, shopping carts and content
executive systems, shape modern websites and
provide businesses with the means crucial to
correspond with prospects and customers. These are
all familiar examples of web applications.

Web applications are, therefore, computer
programs conceding website visitors to submit and
retrieve data to/from a database over the Internet
using their approved web browser. The data is then
conferred to the user within their browser as
information is achieved dynamically by the web
application through a web server.

For the more technical oriented, Web
applications query the content server (essentially a
content repository database) and dynamically
generate web documents to handle to the client
(people surfing the website). The documents are
generated in a standard format to allow brace by all
browsers (e.g. HTML or XHTML). JavaScript is one
form of client side script that permits dynamic
elements on each page (e.g. image innovations). The
web browser interprets and runs all scripts while
exhibiting the requested pages and content.

Additional significant advantage of building and
maintaining web applications is that they achieve
their function irrespective of the operating system
and browsers running on client side. Web
applications are quickly set up anywhere at no cost
and without any installation requirements at the
user’s end. As the number of businesses grasping the
benefits of doing business over the web increases, so
will the use of web applications and other related

 Int. J. of Comp. & Info. Tech., (2016) 4(2): 35-42.

37

technologies endure to grow. Moreover, since the
increasing adoption of intranets and extranets, web
applications become immensely entrenched in any
organization’s communication infrastructures,
further broadening their scope and probability of
technological complexity and prowess.

3. WEB Application Vulnerabilities

Application vulnerability is a system fault or
weakness in an application that could be exploited to
compromise the security of the application. Once an
attacker has erected a flaw, or application
vulnerability, and determined how to access it, the
attacker has the probable to exploit the application
vulnerability to facilitate a cyber-crime. These
crimes affects the confidentiality, integrity, or
availability (known as the “CIA triad”) of resources
possessed by an application, its designers and its
users. Attackers typically rely on specific tools or
methods to perform application vulnerability
detection and compromise. According to Gartner
Security, the application layer currently contains
90% of all vulnerabilities. The following list
discloses some of the most common attacks that can
be performed and each item will then be described in
further details.

3.1. SQL Injection

SQL injection is a type of attacks that help
application's vulnerabilities that interacts with a
database, by injecting an unauthorized SQL query by
an attacker in order to deal its security. SQLI is one
of the most eminent and popular web applications
vulnerability where the attackers exploits input
vulnerability and attempts to send incorrect
command or SQL query to the application [2].

3.2. Cross Site Scripting

Cross Site Scripting (XSS) ensues when an attacker
is capable of injecting a script, usually JavaScript,
into the output of a web application in such a way
that it is executed in the client browser [3]. This
generally happens by establishing a means of
breaking out of a data text in HTML into a scripting
text - usually by infusing new HTML, JavaScript
strings or CSS markup. HTML has no lack of
locations where executable JavaScript can be infused
and browsers have even persuaded to add more. The
injection is sent to the web application via any means
of input such as HTTP parameters [3].

3.3. Invalidated Input

In web application the users are categorized in the
distinct level of privileges. Access control

determines how the web application avows access to
functions to some users and not others, also called
authorization. But attacker may be access higher
level of authority. Web application desire inputs
from user to determine how to react in accordance to
serve web service.

3.4. Broken Access Control

The user invades input values to web application
suit. Attackers may pass toxic information to the web
application which tries to bypass the website's
security mechanisms.

3.5. Broken Authentication and Sessions
Management

In the web application when error ensues under
normal activities and if not handled by appropriate
error message to the user then there is opportunities
of getting clues on flaws about the web application to
the attackers and may disturb to the normal user.
Web application creates session when the user
logged in, which specify the duration of time that a
rare user relates with a web application.

3.6. Improper Error Handling

Using session maintains state by contributing the
client with a unique id. This id is gathered in a
cookie which is used between the user browser and
web server. If this session's details are not secured
correctly, attacker can swipe it and misuse it.

3.7. Parameter Modification

Parameter modification is the problem where the
attacker's do not padding the form but rather ravines
the parameters from URL itself, bypassing the form
validations. Hence it may lead to ambiguous effect
on the form data and the overall site data.

3.8. Insecure Configuration Management

The web server that hosts the web application
consists of web configuration files and directories
which should not be earned or view by someone
pirated. So must be preserved against the attackers.

3.9. Cookie Modification

Cookie stores the information in the text format
which is used for case management. The web
application needs cookies; the server delivers cookie
and stores at client browser. The browser then
returns the cookie to the server the next time the
page is desired. The attackers can surely connect
with the server to modify the contents of user's
cookie [4].

Singh, E. G.; Kaur, R.; Kaur, A.

38

3.10. Cross Site Request Forgery

This is a type of exploitation where attacker tricks
victim into sending crafted web requests via image
tag, XSS, or by means of other techniques with the
victim’s valid session identifier, however, on the
attacker’s behalf. Since the browser sends the
sensitive information such as session cookies
automatically, the victim’s session being tempered,
result in loss of sensitive information, also attacker
can make forge requests that are undistinguishable
from legitimate ones [5].

3.11. Command Execution

The specific purpose of the command injection
attack is to inject and execute the commands that are
specified by the attacker in the vulnerable
application. These commands are executed with the
same privileges as the application or web servers.

4. Literature Survey

Zoran Djuric [6] has purposed a tool named
SQLIVDT that is designed for efficient SQLI
vulnerability detection. The main goal of that tool is
to generate test inputs & assess test results. Web
application vulnerabilities allow attackers to perform
malicious actions from unauthorized CCOUNT
ACCESS. In last decade web application
vulnerabilities are growing. The black box approach
is based on simulation of SQL attacks against web
applications.

Jose Fonseca, Nuno Seixas, Marco Vieira, and
Henrique Madeira [7] had presented an analysis of
715 vulnerabilities, 121 exploits of 17 web
applications. Some web applications were written in
weak typed language and other in strong. According
to paper weak typed are the performed targets. Most
web application have critical bugs affecting their
security .To prevent security problems it is important
to understand their typical software faults. SQL
Injection & XSS are two most widely spread and
critical web application vulnerability. To understand
how these vulnerabilities are exploited by hacker’s
paper presents an analysis of the source code of
script used.

Jose Fonseca and Marco Vieira [8] have studied
the use of static code analysis tool to detect
vulnerabilities in the plugins. Results showed that
many plugins that are currently deployed worldwide
have dangerous cross site scripting & SQL Injection
vulnerabilities that can be exploited. This paper
analyzed the security vulnerabilities of 35 word press
plugins using RIPS and PHPSAFE. More than 350

XSS & SOL unknown vulnerabilities were detected
plugins are potential source of security problems.
Effectiveness of static analysis tools needs to be
improved, both in term of coverage and false
positive. Many web applications allow the
integration of 3rd part server side plugins offer
diverse functionality and open an additional
vulnerabilities door.

Mukesh Kumar Gupta, M.e.Govil and Girdhari
Singh [9] have proposed a classification of software
security approaches used to develop secure software
in various phase of software development life cycle.
Static analysis approaches are able to find out the
cause of a security problem and can find errors.
Error finding not only reduce the cost of error, also
quick feedback cycle improves the coding approach.
Static analysis approach suffers from false positive
and false negative results. Dependence on web
application is increasing very rapidly in recent time
and create problem and for other purposes. Sol
Injection and XSS are the most dangerous security
vulnerability exploited in web application i.e. eBay,
google, fb, etc. Most developer’s repeat same
programming mistake in their code because they do
not follow security guidelines.

Adnan Masood and Jim Java [10] have presented
the challenges of existing standards and reviews new
techniques & tools to improve services security by
detecting vulnerabilities are discussed. RESTFUL
services have now become the new services
development paradigm normal. The overview of the
OWASP top 10 vulnerabilities for web services the
potential static code analysis technique to discover
vulnerabilities are discussed. Application layer
vulnerability in the web services are a microcosm of
the exploits available at the disposal of web
application attackers. An iterative threat modeling
approaches scan better prepare us to face and
mitigate such attacks and make service oriented
architecture as secure as possible.

Iberia Medeiros and Nuno Neves [11] have
presented an approach for finding and correcting
vulnerabilities in web applications and a tool to
implement the approaches for PHP programs. Static
source code analysis and data mining two techniques
are used. The security of web application continues
to be a challenging problem. In this paper the
combination of method are used to discover
vulnerabilities in source code with fewer false
positives. WAP tools are used and large set of PHP
applications are used for experimental evaluation.
They found 388 vulnerabilities in 1.4 million lines of
code.

J. Pradeep Kumar, Dr. T. Ravi and K. V.
Nagendra [12] have presented a method for modeling

 Int. J. of Comp. & Info. Tech., (2016) 4(2): 35-42.

39

SOLIAs with the Augmented Attack TREE and
regular expressions to capture subtle SQL statements
formed by SQLIA adversaries. It also presents
various security vulnerabilities in web application
and provides the analysis for counter from security
vulnerabilities. It shows various forms SOL Injection
& Cross Site Scripting attacks.

Wang Chunlei, Liu Li and Liu Qiang [13] have
presented a web services vulnerability identification
and analysis method based on fuzz testing, including
identifying inputs, generating fuzz testing data,
performing fuzz testing, monitoring and
identification of normal fragility, etc. Several
vulnerabilities including SQL injection, information
leakage, Xpath injection are discovered by using
WSFuzzer to carry out web services vulnerability
fuzz testing. It shows that the method proposed in
this paper can effectively test the vulnerability of
web services with high efficiency. When the
experiments are conducted on the internet, firewalls
and intrusion detection systems sometimes intercept
the invocation of web service requests and have great
impacts on fuzz testing.

Abdul Razzaq, Ali Hur, Sidra Shahbaz,
Muddassar Masood and H Farooq Ahmad [14] have
presented the compared of web application firewall
solutions with important features necessary for the
security at application layer. The available security
solutions are ineffective due to their focus on
network layer and limitations in their core
technologies design. Various solutions available as
open source and in commercial market are creating
problem for selecting the suitable solution for the
security of the organizational systems. Critical
analysis on WAF solutions is helpful for the users to
select the most suitable solution to their
environment. Due to dramatic increase in web
applications, security gets vulnerable to variety of
threats. The basic reason behind success of these
attacks is the ignorance of application developers
while writing the web applications and the
vulnerabilities in the existing technologies.

Marcelo Invert Palma Salas, Paulo Licio de
Geus and Eliane Martins [15] have showed that web
services have raised new challenges on information
security; this technology is susceptible to XML
Injection attacks, which would allow an attacker to
collect and manipulate information to insert
malicious code in either server side or client side,
being one of the most employed attack against web
applications. The fault injection technique improves
the robustness of web applications, through the
greater flexibility to modify the test cases and to find
software bugs. The result shows that 82% of web
services tested were vulnerable to XML Injection
attacks.

Theodoor Scholte, William Robertson, Davide
Balzarotti and Engin Kirda [16] have presented a
novel technique for preventing the exploitation of
XSS and SQL injection vulnerabilities based on
automated a data type detection of input parameters.
The author implemented IPAAS for PHP and
evaluated it on five-world web application with
known XSS and SQL injection vulnerabilities. The
evaluation demonstrates that IPAAS would have
prevented 83% of SQL injection and 65% of XSS
vulnerabilities. Web application becomes an integral
part of the daily lives of millions of users. But these
applications are also targeted by attackers and critical
vulnerabilities are still common. Current techniques
focus mainly on sanitization: either on automated
sanitization, the detection of missing sanitizers, and
the correctness of sanitizers.

Chandershekhar Sharma and Dr. S.C. Jain [17]
have presented Web application interacts with the
back end database to retrieve data as and when
requested by the user. SQL injection attacks are one
of the top most threats in database centric web
application and SQL injection vulnerabilities are the
most serious vulnerability types. In this paper the
classification of SQL injection attacks are discussed
and also analysis is done on basis of risk associated
with each attack. The result of analysis highlights the
impact of attacks on the database of web
applications. This analysis can be very helpful in
designing the detection tools.

Seung-Jae Yoo and Jeong-Mo Yang [18] have
proposed recently cyber hacking incidents and
accidents increase significantly so that the damage
has spread to businesses, society and national level.
As web security is emerged as the most important
security, it has emerged as core topics in security
research. In this paper, Author builds a system to
find unencrypted packets through real time packets
monitoring and furthermore propose to build the
applied encrypted system. In this, more than
3000pages are collected and analyzed including
subpage of the homepage. Among them about 2100
pages were not encrypted. This approximately
corresponds to a probability of 80%.

Yunhui Zheng and Xiangyu Zhang [19] have
proposed a path and context sensitive inter
procedural analysis to detect RCE vulnerabilities.
This paper develop a prototype system and evaluate
it on ten real world PHP applications, 21 true RCE
vulnerabilities, with 8 unreported before are
identified. A novel algorithm is developed to resolve
the two sets of constraints together. The experiment
shows that the technique is very effective in
detecting RCE vulnerabilities in real-world PHP
applications, producing much fewer false positives
compared to alternative techniques. Remote code

Singh, E. G.; Kaur, R.; Kaur, A.

40

execution attacks are one of the most prominent
security threats for web applications. It is a special
kind of cross site scripting attack that allows client
inputs to be stored and executed as server side
scripts.

Jan-Min Chen, and Chia-Lun Wu [20] have
implemented an automated vulnerability scanner that
for the injection attacks and scanned the injection
attack vulnerabilities. They proposed mechanisms
were a focus on SQL injection and Cross site
scripting attack. As they according to detect based on
injection point, so they can clearly know where the
bug is, reduce the debug time and increase
efficiency.

Ha Thanh Le and Peter Kok Keong Loh [21]
have presented their experience with and
experimental exemplification of using the
Application Vulnerability Description Language
(AVDL) to realize a unified data model for
technology-independent vulnerability analysis of
web applications. They conduct case studies with
different web application scanners and evaluating
their outputs using AVDL. They continue with
description extraction tool and the unified data model
as a data interface for the rule-based inference engine
which incorporates vulnerability analysis and
prediction capability.

José Fonseca, Marco Vieira and Henrique
Madeira [22] have proposed an approach to evaluate
and compare web application vulnerability scanners.
They presented a method to evaluate and benchmark
automatic web vulnerability scanners using software
fault injection techniques. The percentage of false
positives is very high, ranging from 20% to 77% in
the experiments performed and the results show that
in general the coverage is low.

Mattia Monga, Roberto Paleari and Emanuele
Passerini [23] have presented an approach for
detecting injection vulnerabilities in web applications
through hybrid analysis techniques. They described
the design and implementation of Phan, a hybrid
analyzer for PHP applications that works directly at
the Zendbytecode level. Their proposal blends
together the strengths of static and dynamic
approaches: the preliminary static analysis phase
helps reducing the run-time overhead connected with
dynamic monitoring. The preliminary results indicate
that the improvement with respect to a taint analysis
entirely dynamic is significant.

Xin Wang, Luhua Wang, Gengyu Wei, Dongmei
Zhang and Yixian Yang [24] have proposed a SQL
injection vulnerability detection method based on
hidden web crawling. They combine authentication
with the crawler model, and find SQL injection

vulnerability by simulating web attacking and
analyzing the data of response, also did two
experiments, one is to compare the coverage of our
tool with other three tradition scanners [10, l3, 24] by
detecting three common public web sites, and the
result shows that the system we implemented can
retrieve hidden web pages and its page coverage is
larger than other three scanners.

Gang Zhao and Hua Chen [25] have presented
the use of data-flow based methods to analyze the
vulnerability of Java program in bytecode. Data-flow
analysis is a technique to expose the global influence
of data in a program. They discussed the
characteristics of the software vulnerability. The
relationship of the vulnerability analysis and data-
flow analysis is investigated. There is a suggestion
about the framework of a data-flow based analysis
system. Its implementation aims to Java bytecode is
brought out.

Weider D., Yu Shruti Nargundkar and
Nagapriya Tiruthani [26] have proposed in detail the
various methods used in phishing. They perform a
root-cause analysis of the methods used in phishing,
the motivation for phishing and in the process come
up with a fishbone diagram outlining the causes and
methodologies used in phishing. This analysis is
aimed at helping developers to design and develop
better anti phishing solutions.

Lwin Khin Shar, Lionel C. Briand and Hee Beng
Kuan Tan [27] have proposed using a set of hybrid
(static+dynamic) code attributes that characterize
input validation and input sanitization code patterns
and are expected to be significant indicators of web
application vulnerabilities. Because static and
dynamic program analyses complement each other,
both techniques are used to extract the proposed
attributes in an accurate and scalable way. Therefore,
building predictors using machine learners trained
with the information provided by both static and
dynamic analyses and available vulnerability
information, they achieve good accuracy while
meeting scalability requirements.

Tânia Basso, Plínio César Simões Fernandes and
Mario Jinoand Regina Moraes [28] have presented
an experimental study where they analyzed the effect
that Java software faults, injected on the source code
of Web applications, can have on security
vulnerabilities. Also, they analyzed the influence of
these faults on the security vulnerabilities detection
by a well-known commercial web security
vulnerability scanner tool. The results of the scanner
tool were validated through manual attacks based on
attack trees.

 Int. J. of Comp. & Info. Tech., (2016) 4(2): 35-42.

41

Nuno Antunes and Marco Vieira [29] have
presented an experimental study on the comparison
of several web vulnerability detection tools
implementing either penetration-testing or static
code. They showed how effective these two
techniques are on the detection of SQL Injection
vulnerabilities in web services code. The Results
suggest that, in general, static code analyzers are able
to detect more SQL Injection vulnerabilities than
penetration testing tools and coverage of static code
analysis tools is typically much higher than of
penetration testing tools.

5. Conclusion

In this paper, we mainly emphasized on discussing
the literature about the destructive vulnerabilities of
web applications as these web applications have
more significantly popular and have wide spread
interaction medium in the present era. But at same
point these destructive vulnerabilities disclosed the
user`s sensitive information regularly. These
vulnerabilities should be analyzed efficiently and
proper countermeasures are implemented to prevent
the user`s critical information from being tampered.

6. References

[1] http://www.acunetix.com/websitesecurity/web-
applications/

[2] Nadya ElBachir El Moussaid, Ahmed Toumanari, (2014),
“Web Application Attacks Detection: A Survey and
Classification”, International Journal of Computer
Applications Volume 103, No.12.

[3] Http://phpsecurity.readthedocs.org/en/latest/Cross-Site-
Scripting-(XSS).html. [Accessed on February 2016]

[4] Katkar Anjali S., Kulkarni Raj B, (2012), “Web
Vulnerability Detection and Security Mechanism”,
International Journal of Soft Computing and Engineering,
Volume-2, Issue-4.

[5] Gopal R. Chaudhari, Prof. Madhav V. Vaidya, (2014), “A
Survey on Security and Vulnerabilities of Web
Application”, International Journal of Computer Science
and Information Technologies, Vol. 5 (2).

[6] Zoran Djuric, (2013), “A Black-box Testing Tool for
Detecting SQL Injection Vulnerabilities”, IEEE Second
International Conference on Informatics and Applications,
pp. 216- 221.

[7] Jose´ Fonseca, Nuno Seixas, Marco Vieira, and Henrique
Madeira, (April 2014), “Analysis of Field Data on Web
Security Vulnerabilities”, IEEE transactions on dependable
and secure computing, Vol. 11, No. 2, pp. 89- 100.

[8] José Fonseca and Marco Vieira, (2014), “A Practical
Experience on the Impact of Plugins in Web Security”,
IEEE 33rd International Symposium on Reliable
Distributed Systems, pp. 21-30.

[9] Mukesh Kumar Gupta, M.E. Govil and Girdhari Singh,
(May 2014), “Static Analysis Approaches to Detect SQL

Injection and Cross Site Scripting Vulnerabilities in Web
Applications”, IEEE International Conference on Recent
Advances and Innovations in Engineering, Jaipur, India.

[10] Adnan Masood, Jim Java, (2015), “Static Analysis for Web
Service Security – Tools & Techniques for a Secure
Development Life Cycle”, International Symposium on
Technologies for Homeland Security, pp. 1-6.

[11] Ibéria Medeiros, Nuno Neves, (2015), “Detecting and
Removing Web Application Vulnerabilities with Static
Analysis and Data Mining”, IEEE TRANSACTIONS ON
RELIABILITY, pp.1-16.

[12] J. Pradeep Kumar, Dr. T. Ravi and K. V. Nagendra, (2012),
“Analysis of security vulnerabilities for web based
application” IEEE, pp. 233- 236.

[13] Wang Chunlei, Liu Li, Liu Qiang, (2014), “Automatic fuzz
testing of web service vulnerability” International
Conference on Information and Communications
Technologies, pp. 1-6.

[14] Abdul Razzaq, Ali Hur, Sidra Shahbaz, MuddassarMasood,
H Farooq Ahmad, (2013), “Critical Analysis on Web
Application Firewall Solutions”, IEEE Eleventh
International Symposiumon Autonomous Decentralized
Systems, pp. 1-6.

[15] Marcelo Invert Palma Salas, Paulo Lício de Geus, Eliane
Martins, (2015), “Security Testing Methodology for
Evaluation of Web Services Robustness - Case: XML
Injection”, IEEE World Congress on Services, pp. 303-
310.

[16] Theodoor Scholte, William Robertson, Davide Balzarotti,
EnginKirda, (2012), “Preventing Input Validation
Vulnerabilities in Web Applications through Automated
Type Analysis”, IEEE 36th International Conference on
Computer Software and Applications, pp. 233- 243.

[17] Chandershekhar, Dr. S.c. Jain, (2014), “Analysis and
Classification of SQL Injection Vulnerabilities and Attacks
on Web Applications”, IEEE International Conference on
Advances in Engineering & Technology Research, pp. 1-6.

[18] Seung-Jae Yoo, Jeong-Mo Yang, (2014), “Web login
Vulnerability Analysis and Countermeasures”,
International Conference on IT Convergence and Security,
pp. 1-4.

[19] Yunhui Zheng and Xiangyu Zhang, (2013), “Path Sensitive
Static Analysis of Web Applications for Remote Code
Execution Vulnerability Detection”, IEEE 35th
International Conference on Software Engineering, pp.
652- 661.

[20] Jan-Min Chen, and Chia-Lun Wu, (2010), “An Automated
Vulnerability Scanner for Injection Attack Based on
Injection Point”, International Computer Symposium (ICS),
pp. 113- 118.

[21] Ha Thanh Le and Peter Kok Keong Loh, (2008),
“Evaluating AVDL Descriptions for Web Application
Vulnerability Analysis”, ISI 2008, June 17-20, 2008,
Taipei, Taiwan, IEEE, pp. 279-281.

[22] José Fonseca and Marco Vieira, Henrique Madeira, (2007),
“Testing and comparing web vulnerability scanning tools
for SQL injection and XSS attacks”, 13th IEEE
International Symposium on Pacific Rim Dependable
Computing, pp. 365-372.

[23] Mattia Monga, Roberto Paleari, Emanuele Passerini,
(2009), “A hybrid analysis framework for detecting web
application vulnerabilities”, ICSE’09 Workshop,
Vancouver, Canada, IEEE, pp. 25- 32.

[24] Xin Wang, Luhua Wang, Gengyu Wei, Dongmei Zhang,
Yixian Yang, (2010), “Hidden web crawling for SQL
injection detection”, 3rd IEEE International Conference on
Broadband Network and Multimedia Technology, pp. 14-
18.

Singh, E. G.; Kaur, R.; Kaur, A.

42

[25] Gang Zhao and Hua Chen, (2008), “Data-flow Based
Analysis of Java Bytecode Vulnerability”, The Ninth
International Conference on Web-Age Information
Management, pp. 647- 653.

[26] Weider D., Yu Shruti Nargundkar and Nagapriya Tiruthani,
(2008), “A Phishing Vulnerability Analysis of Web Based
Systems”, IEEE Symposium on Computers and
Communications, 2008. Pp. 326- 331.

[27] Lwin Khin Shar, Lionel C. Briand and Hee Beng Kuan
Tan, (2013), “Web Application Vulnerability Prediction
using Hybrid Program Analysis and Machine Learning”,
IEEE 36th International Conference on Computer Software
and Applications, pp. 1-35.

[28] Tânia Basso, Plínio César Simões Fernandes, Mario
Jinoand Regina Moraes, (2010), “Analysis of the Effect of
Java Software Faults on Security Vulnerabilities and Their
Detection by Commercial Web Vulnerability Scanner
Tool”, International Conference on Dependable Systems
and Networks Workshops (DSN-W), pp. 150- 155.

[29] Nuno Antunes, Marco Vieira, (2009), “Comparing the
Effectiveness of Penetration Testing and Static Code
Analysis on the Detection of SQL Injection Vulnerabilities
in Web Services”, 15th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 301- 306.

